
Systems biology

NeoDTI: neural integration of neighbor

information from a heterogeneous network for

discovering new drug–target interactions

Fangping Wan1, Lixiang Hong1, An Xiao1, Tao Jiang2,3,4 and

Jianyang Zeng1,*

1Institute for Interdisciplinary Information Sciences, 2Department of Computer Science and Technology,
3Bioinformatics Division, BNRIST, Tsinghua University, Beijing 100084, China and 4Department of Computer

Science and Engineering, University of California, Riverside, CA 92521, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on March 27, 2018; revised on June 6, 2018; editorial decision on June 26, 2018; accepted on June 29, 2018

Abstract

Motivation: Accurately predicting drug–target interactions (DTIs) in silico can guide the drug dis-

covery process and thus facilitate drug development. Computational approaches for DTI prediction

that adopt the systems biology perspective generally exploit the rationale that the properties of

drugs and targets can be characterized by their functional roles in biological networks.

Results: Inspired by recent advance of information passing and aggregation techniques that gener-

alize the convolution neural networks to mine large-scale graph data and greatly improve the

performance of many network-related prediction tasks, we develop a new nonlinear end-to-end

learning model, called NeoDTI, that integrates diverse information from heterogeneous network

data and automatically learns topology-preserving representations of drugs and targets to facilitate

DTI prediction. The substantial prediction performance improvement over other state-of-the-art DTI

prediction methods as well as several novel predicted DTIs with evidence supports from previous

studies have demonstrated the superior predictive power of NeoDTI. In addition, NeoDTI is robust

against a wide range of choices of hyperparameters and is ready to integrate more drug and target

related information (e.g. compound–protein binding affinity data). All these results suggest that

NeoDTI can offer a powerful and robust tool for drug development and drug repositioning.

Availability and implementation: The source code and data used in NeoDTI are available at:

https://github.com/FangpingWan/NeoDTI.

Contact: zengjy321@mail.tsinghua.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying drug–target interactions (DTIs) through computational

approaches can greatly narrow down the large search space of drug

candidates for downstream experimental validation, and thus sig-

nificantly reduce the high cost and the long period of developing a

new drug (Langley et al., 2017). Currently, the structure based

(Morris et al., 2009), ligand-similarity based (Keiser et al., 2007)

and machine learning based methods (Luo et al., 2017; Yuan et al.,

2016) are three main classes of prediction approaches in computa-

tional aided drug screening. The structure based methods generally

require the three-dimensional structures of proteins and have limited

performance for those proteins with unknown structures, which un-

fortunately is the case for a majority of targets. The ligand-similarity

based methods exploit the common knowledge of known interacting
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ligands to make prediction. Such approaches cannot lead to confi-

dent prediction results if the compound of interest is not indicated in

the library of reference ligands. Recently, the machine learning

based methods (Bleakley and Yamanishi, 2009; Luo et al., 2017),

which fully exploit the latent correlations among the related features

of drugs and targets have become a highly promising strategy for

DTI prediction. For instance, the DTI network data have been inte-

grated with the drug-structure and protein sequence information

into a network-based machine learning model (e.g. a regularized

least squares framework) for predicting new DTIs (van Laarhoven

et al., 2011; van Laarhoven and Marchiori, 2013; Xia et al., 2010).

Inspired by the recent surge of deep learning techniques, models

with higher predictive capacity have also been developed in various

drug discovery settings (e.g. compound–protein interaction predic-

tion, drug discovery with one-shot learning) (Altae-Tran et al.,

2017; Hamanaka et al., 2017; Tian et al., 2016; Wang and Zeng,

2013; Wan and Zeng, 2016; Xu et al., 2017).

In addition to known DTI data, chemical structure, protein se-

quence information and other properties of drugs and targets can

also be characterized by their various functional roles in biological

systems (e.g. protein–protein interactions and drug–disease associa-

tions). Indeed, by integrating diverse information from heteroge-

neous data sources, methods like DTINet (Luo et al., 2017),

MSCMF (Zheng et al., 2013) and HNM (Wang et al., 2014) can

further improve the accuracy of DTI prediction. However, these

methods still suffer from certain limitations that need to be

addressed. For example, in MSCMF (Zheng et al., 2013), the

employed matrix factorization operation of a given DTI network is

regularized by the corresponding drug and protein similarity matri-

ces, which are obtained by integrating multiple data sources through

a weighted averaging scheme. Under such a data integration strat-

egy, substantial loss of information may occur and thus result in a

sub-optimal solution. DTINet (Luo et al., 2017) first uses an un-

supervised manner to automatically learn low-dimensional feature

representations of drugs and targets from heterogeneous network

(HN) data, and then applies inductive matrix completion

(Natarajan and Dhillon, 2014) to predict new DTIs based on the

learnt features. In such a framework, separating feature learning

from the prediction task at hand may not yield the optimal solution,

as the features learnt from the unsupervised learning procedure may

not be the most suitable representations of drugs or targets for the

final DTI prediction task. In addition, by constraining the learning

models to only take relatively simple forms (e.g. bilinear or log-

bilinear functions), these methods may not be sufficient enough to

capture the complex hidden features behind the heterogeneous data.

Recent advance of information passing and aggregation techniques

that generalize the conventional convolution neural networks

(CNNs) to large-scale graph data have shown substantial perform-

ance improvement on the network-related prediction tasks (Gilmer

et al., 2017; Hamilton et al., 2017). This inspires us to incorporate

deeper learning models to extract complex information from a high-

ly HN and discover new DTIs.

In this paper, we propose a new framework, called NeoDTI

(NEural integration of neighbOr information for DTI prediction) to

predict new DTIs from heterogeneous data. NeoDTI integrates

neighborhood information of the HN constructed from diverse data

sources via a number of information passing and aggregation opera-

tions, which are achieved through the non-linear feature extraction

by neural networks. After that, NeoDTI applies a network

topology-preserving learning procedure to enforce the extracted fea-

ture representations of drugs and targets to match the observed net-

works. Comprehensive tests on several challenging and realistic

scenarios in DTI prediction have demonstrated that our end-to-end

prediction model can significantly outperform several baseline pre-

diction methods. Moreover, several novel DTIs predicted by

NeoDTI with evidence supports from previous studies in the litera-

ture further indicate the strong predictive power of NeoDTI. In add-

ition, the robustness of NeoDTI and its extendability to integrate

more heterogeneous data (e.g. compound–protein binding affinity

data) have been examined through various tests. All these results

suggest that NeoDTI can provide a powerful and useful tool in pre-

dicting unknown DTIs, and thus advance the drug discovery and

repositioning fields.

2 Materials and methods

2.1 Problem formulation
NeoDTI predicts unknown DTIs from a drug and target related

HN, in which drugs, targets and other objects are represented as

nodes, and DTIs and other interactions or associations are repre-

sented as edges. We first introduce the definition of a HN.

Definition 1 (heterogeneous network). A HN is defined as a

directed (or undirected) graph G ¼ ðV;EÞ, in which each node v in

the node set V belongs to an object type from an object type set O,

and each edge e in the edge set E � V � V � R belongs to a relation

type from a relation type set R.

The datasets used in our framework to construct the HN

(also see Section 3.1) include the object type set

O ¼ fdrug; target; side� effect; diseaseg, and the relation type set

R ¼ fdrug� structure� similarity; drug� side� effect � associati

on; drug� protein� interaction; drug� drug� interaction; drug

�disease� association; protein� sequence� similarity; protein

� drug� interaction; protein� disease� associa� tion; protein

�protein� interaction; disease� protein� association;disease

� drug� association; side� effect � drug� associationg. In our cur-

rent framework, each node only belongs to a single object type although

it can be relatively easily extended to a multi-object-type mapping scen-

ario. In addition, all edges are undirected and non-negatively weighted.

Also, the same two nodes can be linked by more than one edge, e.g. two

drugs can be linked by a drug� drug� interaction edge and a drug�
structure� similarity edge simultaneously.

Given an HN G, NeoDTI aims to automatically learn a network

topology-preserving node-level embedding (i.e. a function that maps

nodes to their corresponding feature representations that preserve

the original topological characteristics as much as possible) from G

that can be used to greatly facilitate the prediction of DTIs. Most

existing techniques for learning the embeddings of structured data

mainly exploit the rationale that the elements of these structured

data can be well characterized by their contextual information. For

example, in natural language processing, the Word2vec technique

(Mikolov et al., 2013) enforces the embedding of words to preserve

the semantic relationships with their corresponding surrounding

words. The graph embedding techniques, such as Deepwalk (Perozzi

et al., 2014) and metapath2vec (Dong et al., 2017), have extended

this embedding strategy to further learn the latent representations of

network data. Recent advance in generalizing CNNs to analyze

large-scale graph data (Defferrard et al., 2016; Kipf and Welling,

2016) and the integration of the information passing and aggrega-

tion techniques with different graph convolution operations into a

unified framework (Gilmer et al., 2017; Hamilton et al., 2017) have

brought significant performance improvement for many network-

related prediction tasks, such as predicting the biological activities

of small molecules, graph signal processing and social network data
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analysis. Similar to GraphSAGE (Hamilton et al., 2017) and mes-

sage passing neural networks (MPNNs) (Gilmer et al., 2017), our

framework NeoDTI also applies neural networks to integrate neigh-

borhood information from individual nodes. However, unlike

GraphSAGE which mainly focuses on learning a node-level embed-

ding from a homogeneous network or MPNNs which aim at learn-

ing a graph-level embedding from heterogeneous graphs for

predicting molecular properties, NeoDTI focuses on learning a

node-level embedding from a HN. In addition, to the best of our

knowledge, NeoDTI is the first framework to systematically inte-

grate the neural information passing and aggregation techniques

with the topology-preserving optimization scheme into an end-to-

end learning framework to extract the latent features of drugs and

targets from a HN to make DTI prediction.

2.2 The workflow of NeoDTI
NeoDTI consists of the following three main steps: (i) neighborhood in-

formation aggregation; (ii) updating the node embedding and (iii)

topology-preserving learning of the node embedding. Through Steps (i)

and (ii), each node in a given HN generates a new feature representation

by integrating its neighborhood information with its own features.

Through Step (iii), we enforce the embedding of nodes to be topology-

preserving, which is useful for extracting the topological features of in-

dividual nodes for accurate DTI prediction. Next, we will introduce the

mathematical formulations of these three steps.

Definition 2 (neighborhood information aggregation). Given an

HN G, an initial node embedding function f 0 : V ! Rd that maps

each node v 2 V to its d-dimensional vector representation f 0ðvÞ
and an edge weight mapping function s : E ! R that maps each

edge e 2 E to its edge weight s(e), neighborhood information aggre-

gation for node v is defined as:

av ¼
X
r2R

X

u 2 Nr vð Þ;
e ¼ u; v; rð Þ 2 E

s eð Þ
Mv;r

r Wrf
0 uð Þ þ br

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
neighborhood information aggregationwith respect to edge type r

; (1)

where Nr vð Þ ¼ fu; u 2 V; u 6¼ v; u; v; rð Þ 2 Eg denotes the set of ad-

jacent nodes connected to v 2 V through edges of type r 2 R; r �ð Þ
stands for a nonlinear activation function over a single-layer neural net-

work parameterized by weights Wr 2 Rd�d and a bias term br 2 Rd,

andMv;r ¼
P

u2Nr vð Þ; e¼ u;v;rð Þ s eð Þ stands for a normalization term.

More specifically, for each edge-type r, the neighborhood infor-

mation aggregation operation for node v with respect to r can be

obtained by first nonlinearly transforming the embedded feature

representations of the corresponding adjacent nodes f 0 uð Þ; u 2 Nr

vð Þ through an edge-type specific single-layer neural network that is

parameterized by weights Wr 2 Rd�d, a bias term br 2 Rd and a

nonlinear activation function r �ð Þ, and then averaging by the nor-

malized edge weight, i.e. s eð Þ
Mv;r

. Finally, the output of the neighbor-

hood information aggregation operation av for node v is the

summation of neighborhood information aggregation with respect

to every edge-type r. Here, the initial node embedding f 0 uð Þ;8u 2 V

is obtained through a random mapping.

Definition 3 (updating the node embedding). Given the aggre-

gated neighbor information av’s for all nodes v’s, the process of

updating the node embedding is defined as:

f 1 vð Þ ¼ r W1concat f 0 vð Þ; av
� �þ b1

� �

jjr W1concat f 0 vð Þ; avð Þ þ b1ð Þjj2
: (2)

The above equation states that the new embedding of node f 1 vð Þ
can be obtained using a single-layer neural network that is

parameterized by weights W1 2 Rd� 2dð Þ, a bias term b1 2 Rd and a

nonlinear activation function r �ð Þ to nonlinearly transform the con-

catenation of the original embedding f 0 vð Þ and the neighborhood

aggregation information av, and then normalized by its l2 norm.

Noted that in principle we could repeat the previous two steps

alternately several times to produce more embeddings of nodes (e.g.

f 2 �ð Þ; f 3 �ð Þ; . . .). In practice, we find that we only need to conduct

such a process once to obtain reasonably good prediction results,

according to our validation tests (as described in Supplementary

Materials). In the rest part of this section, we will mainly use f 1 �ð Þ to
demonstrate our algorithm for convenience. In addition, we choose

to use ReLU xð Þ ¼ max 0; xð Þ as the activation function r �ð Þ.
Definition 4 (topology-preserving learning of the node embed-

ding). Given the embedding of nodes f 1 �ð Þ, topology-preserving

learning of the node embedding is defined as:

min
ff 0 uð Þ; W1;
b1; Wr; br;

Gr; Hr; ju 2 V; r 2 Rg

X
r2R

X

e¼ðu;v;rÞ2Eu; v2V;

½sðeÞ � f 1ðuÞ>GrH
>
r f

1ðvÞ�2; (3)

whereGr;Hr 2 Rd�k are edge-type specific projection matrices.

The above equation states that, after edge-specific projections of

f 1 uð Þ and f 1 vð Þ by Gr and Hr, respectively, the inner product of the

two projected vectors should reconstruct the original edge weight

s(e) as much as possible. Note that a similar reconstruction strategy

has also been used in (Luo et al., 2017; Natarajan and Dhillon,

2014) to solve the link prediction problems. In addition, if the edge-

type r is symmetric, i.e. r 2 fdrug� structure� similarity; protein

�sequence� similarity; drug� drug� interaction; protein� protei

n� interactiong, we use the tie weights (i.e. Gr ¼ Hr) to enforce this

symmetric property. Here, the summation of the squared reconstruc-

tion errors is minimized for all edges with respect to all unknown

parameters. Since all mathematical operations in Equations (1), (2)

and (3) are differentiable or subdifferentiable (e.g. for the ReLU acti-

vation function), all parameters can be trained through an end-to-

end manner by performing gradient descent to minimize the final

objective function described in Equation (3).

Finally, after Step (iii), the predicted interaction confidence score

between drug node u and protein node v can be obtained by

f 1 uð Þ>GrH
>
r f

1 vð Þ;
subject to / uð Þ ¼ drug;

/ vð Þ ¼ protein;

r ¼ drug� protein� interaction;

(4)

where / uð Þ and / vð Þ stand for the node types of u and v, respective-

ly, and r represents their edge-type.

The above operation is equivalent to reconstructing the drug� p

rotein edge weight between nodes u and v. By collecting f 1 uð Þ’s for
all drugs and f 1 vð Þ’s for all targets, we can form a drug feature ma-

trix Fdrug and a target feature matrix Ftarget. Then, the reconstructed

DTI matrix can be written as:

WDTI reconstruct ¼ FdrugGrH
>
r F

>
target: (5)

In this sense, we can consider our DTI prediction task as a ma-

trix factorization or completion problem. However, unlike the con-

ventional matrix factorization approaches (Natarajan and Dhillon,

2014; Zheng et al., 2013), NeoDTI incorporates a deeper learning

model to construct the feature matrices Fd and Ft by explicitly defin-

ing the construction processes of Fd and Ft through Steps (i) and (ii).

In addition, through these two steps, NeoDTI incorporates the prior

knowledge of network topology into Fd and Ft and specifies the
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forms of these two matrices to guide the downstream optimization

process. As a result, NeoDTI prevents the DTI network as well as

other networks from being factorized arbitrarily in Step (iii), which

can serve as a useful regularizer and thus lead to performance im-

provement for DTI prediction (as also demonstrated in our cross-

validation tests; see the Results section).

3 Results

3.1 Datasets
We adopted the datasets that were curated in our previous study

(Luo et al., 2017), which included six individual drug/protein related

networks: drug–protein interaction and drug–drug interaction net-

works [interactions were extracted from Drugbank Version 3.0

(Knox et al., 2011)], the protein–protein interaction network [inter-

actions were extracted from the HPRD database Release 9 (Keshava

Prasad et al., 2009)], drug–disease association and protein–disease

association networks [associations were extracted from the

Comparative Toxicogenomics Database (Davis et al., 2013)] and

the drug-side-effect association network [associations were

extracted from the SIDER database Version 2 (Kuhn et al., 2010)].

The basic statistics of these datasets can be found in Supplementary

Table S1. We also incorporated drug chemical structure information

as well as protein sequence information by creating two extra net-

works: the drug-structure similarity network [i.e. a pair-wise chem-

ical structure similarity network measured by the dice similarities of

the Morgan fingerprints with radius 2 (Rogers and Hahn, 2010),

which were computed by RDKit (http://www.rdkit.org)] and the

protein sequence similarity network [which was obtained based on

the pair-wise Smith–Waterman scores (Smith and Waterman,

1981)). All networks had binary edge weights (one represents a

known interaction or association, and zero otherwise) except the

drug-structure similarity and the protein sequence similarity net-

works, which had non-negative real-valued edge weights. We com-

bined all these eight networks to construct the HN (Fig. 1) for

evaluating the prediction performance of NeoDTI.

3.2 NeoDTI yields superior performance in predicting

new drug–target interactions
The DTI prediction can be considered as a binary classification

problem, in which the known interacting drug–target pairs are

regarded as positive examples, while the unknown interacting pairs

are treated as negative examples. Several challenging and realistic

scenarios were considered in our tests to evaluate the prediction per-

formance of NeoDTI. The hyperparameters of NeoDTI were deter-

mined using an independent validation set (as described in

Supplementary Materials). We first ran a 10-fold cross-validation

test on all positive pairs and a set of randomly sampled negative

pairs, whose number was 10 times as many as that of positive sam-

ples. This scenario basically mimicked the practical situation in

which the DTIs are sparsely labeled. For each fold, a randomly

chosen subset of 90% positive and negative pairs was used as train-

ing data to construct the HN and then train the parameters of

NeoDTI (i.e. during the topology-preserving learning process, we

only calculated the reconstruction loss of the DTI network with re-

spect to training data, while the reconstruction losses of other types

of networks were computed as usual), and the remaining 10% posi-

tive and negative pairs were held out as the test set. We also com-

pared the performance of NeoDTI with that of six baseline

methods, including DTINet (Luo et al., 2017), HNM (Wang et al.,

2014), MSCMF (Zheng et al., 2013), NetLapRLS (Xia et al., 2010),

DT-Hybrid (Alaimo et al., 2013) and BLMNII (Mei et al., 2013).

The details on how to integrate heterogeneous data and how to de-

termine the hyperparameters in these baseline methods can be found

(a)

(b)

(c)

(d)

Fig. 1. The schematic workflow of NeoDTI. (a) NeoDTI uses eight individual drug or target related networks (see Section 3.1 for more details of the used datasets).

(b) NeoDTI first constructs a heterogeneous network from these eight networks. Different types of nodes are connected by distinct types of edges. Two nodes can

be connected by more than one edge (e.g. a solid link representing drug–drug-interaction and a dashed link representing drug-structure-similarity). In addition,

NeoDTI associates each node with a feature representation. (c) To extract information from neighborhood, each node adopts a neighborhood information aggre-

gation operation (see Definition 2 in the main text). Each colored arrow represents a specific aggregation function with respect to a specific edge-type. Then each

node updates its feature representation by integrating its current representation with the aggregated information (see Definition 3 in the main text). (d) By enforc-

ing the node features to reconstruct the original individual networks as much as possible (see Definition 4 in the main text), NeoDTI effectively learns the top-

ology-preserving node features that are useful for drug–target interaction prediction
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in Section 2 of Supplementary Materials. The area under precision

recall (AUPR) curve and the area under receiver operating character-

istic (AUROC) curve were used to evaluate prediction performance

of all prediction methods. We observed that NeoDTI greatly outper-

formed other baseline methods, with significant improvement

(3.5% in terms of AUPR and 3.0% in terms of AUROC) over the se-

cond best method (Fig. 2a and Supplementary Fig. S1a).

Next, we further increased the positive-negative ratio by includ-

ing all negative examples (i.e. all unknown drug–target interacting

pairs) in the 10-fold cross-validation procedure (the ratio between

positive and negative samples was around 1:8� 10�3). We observed

a larger AUPR improvement (14.1%) over the second best method

(Fig. 2b). Although NeoDTI, DTINet, HNM and NetLapRLS

achieved comparable results in terms of AUROC in this scenario

(Supplementary Fig. S1b), as also stated in previous work (Davis

and Goadrich, 2006), here, AUPR generally provides a more inform-

ative criterion than AUROC for the highly skewed datasets. Since

drug discovery is generally a needle-in-a-haystack problem, the sub-

stantial improvement in AUPR truely demonstrated the superior pre-

diction performance of NeoDTI over other methods.

Since the datasets may contain ‘redundant’ DTIs (i.e. a same pro-

tein is connected to more than one similar drugs and vice versa), the

prediction performance can be easily inflated by easy predictions in

this case (Luo et al., 2017). To consider this issue, we followed the

same evaluation strategies as in (Luo et al., 2017) by conducting the

following additional 10-fold cross-validation tests: (i) removing

DTIs with similar drugs (i.e. drug chemical structure similarities

>0.6) or similar proteins (i.e. protein sequence similarities > 40%);

(ii) removing DTIs with drugs sharing similar drug interactions (i.e.

Jaccard similarities >0.6); (iii) removing DTIs with drugs sharing

similar side-effects (i.e. Jaccard similarities >0.6); (iv) removing

DTIs with drugs or proteins sharing similar diseases (i.e. Jaccard

similarities >0.6). In all these test scenarios, we kept the ratios be-

tween positive and negative samples to be 1:10. As expected, we

observed a drop in prediction performance for all prediction meth-

ods after the removal of redundant DTIs (Fig. 2c–e and

Supplementary Fig. S1c–g). However, NeoDTI still consistently out-

performed other prediction methods in terms of both AUPR and

AUROC, which also indicated the robustness of NeoDTI after

removing the redundancy in data.

In dyadic prediction, if a dataset contains many drugs or targets

with only one interacting partner, conventional cross-validation

may not be a proper way to evaluate the prediction performance.

Here, we call such drugs, proteins and interactions as ‘unique’. In

such a case, conventional training methods may lean to exploit the

bias toward those unique drugs and targets to boost the performance

(van Laarhoven and Marchiori, 2014). To investigate this issue, we

further evaluated the prediction performance of NeoDTI by separat-

ing unique DTIs from non-unique ones. That is, all methods were

trained on non-unique DTIs and then evaluated on unique DTIs.

Note that in such a case, the negative examples in the test data were

sampled by enforcing the corresponding drugs or targets (or both) to

be unique. This scenario basically mimicked the situation in which

the DTIs of new drugs or targets are predicted without much prior

DTI knowledge. We found that NeoDTI significantly outperformed

all the baseline methods at least by 13.3% in terms of AUPR, which

suggested that NeoDTI can have a much better generalization cap-

acity over other state-of-the-art methods, when predicting new DTIs

for those drugs or targets without much prior DTI knowledge.

3.3 Robustness of NeoDTI
In this section, we further evaluated the robustness of NeoDTI by

varying different types of data used in the HN as well as the hyper-

parameters of NeoDTI. All computational experiments in this

(a) (b) (c)

(d) (e) (f)

Fig. 2. Performance evaluation of NeoDTI on several challenging scenarios in terms of the AUPR scores. (a) A 10-fold cross-validation test in which the ratio be-

tween positive and negative samples was set to 1 : 10. (b) A 10-fold cross-validation test in which all unknown drug–target interacting pairs were considered.

(c–e) Ten-fold cross-validation with positive: negative ratios ¼1 : 10 on several scenarios of removing redundancy in data: (c) DTIs with similar drugs and proteins

were removed; (d) DTIs with drugs sharing similar drug interactions were removed; (e) DTIs with drugs sharing similar side-effects were removed. (f) NeoDTI

was trained on non-unique drug–target interacting pairs and tested on unique drug–target interacting pairs. More details on the baseline methods can be found

in Supplementary Materials. All results were summarized over 10 trials and expressed as mean6SD
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section were conducted using a 10-fold cross-validation procedure

in which the ratios of positive versus negative samples were set to

1 : 10.

To examine the effects of incorporating heterogeneous data, we

first evaluated the performance of NeoDTI when being trained using

only the drug–protein interaction network. We observed a substan-

tial drop of prediction performance (11.1% in terms of AUPR and

9% in terms of AUROC), compared to that of the original NeoDTI

model trained on all eight networks (Fig. 3a). We then investigated

the effects of incorporating individual networks by training NeoDTI

again on a HN constructed from each individual network and the

drug–protein interaction network. As expected, we found that add-

ing individual drug or target related networks can improve the pre-

diction performance (Fig. 3a and Supplementary Fig. S2a–e). These

results suggested that diverse information from multiple data sour-

ces can better characterize the latent properties of drugs and targets,

and thus incorporating heterogeneous information is necessary to

improve the accuracy of DTI prediction. In addition, to examine

whether NeoDTI can also be easily extended to incorporate more

drug or target related information beyond the previously used data-

sets, we further incorporated compound-protein binding affinity in-

formation into the HN. More specifically, we collected all the

binding affinity data between drug-like compounds and proteins

that satisfied Ki � 1:0nm from the ZINC15 database (Sterling and

Irwin, 2015). In total, we extracted 1696 edges that connected 1244

compounds to the proteins used in our previous datasets. We set the

negative logarithm of Ki between a pair of compound and protein as

the weight of their corresponding interaction. We also linked the

compounds and drugs by drug-structure-similarity edges. In add-

ition, if a compound and a drug were similar (i.e. chemical structure

similarities >0.6) and connected to the same protein in the test set,

we removed this compound–protein pair from the training set to

ease the inflation of prediction performance that may be resulted

from the redundancy in data. We found that NeoDTI trained on this

new HN further improved AUPR from 85.3 to 86.2% and AUROC

from 94.6 to 95.1% (Fig. 3b), which demonstrated the easy extend-

ability of NeoDTI to integrate more heterogeneous information.

The drug/protein-disease association edges used for constructing

our HN were derived from the Comparative Toxicogenomics

Database (Davis et al., 2013). These edges can be further distin-

guished as marker, therapeutic and inferred types. The investigation

of the effect of distinguishing different edge-types on the prediction

performance can be found in Section 3 of Supplementary Materials.

We found that utilizing all binary drug/protein-disease associations

without distinguishing individual edge-types yielded the best predic-

tion performance.

In our topology-preserving learning of the node embedding, we

enforce the feature representations of nodes to reconstruct all types

of edges as much as possible. We further investigated the effect of

this edge reconstruction strategy by conducting an additional test in

which we constrained NeoDTI to only reconstruct the DTI edges. In

this test, we observed a decrease in prediction performance with

5.5% in terms of AUPR and 2.7% in terms of AUROC

(Supplementary Fig. S2f). Thus, reconstructing other types of net-

work edges is useful for boosting the prediction performance. Such

an operation probably serves as a beneficial regularizer to further

overcome the potential overfitting problem. In the neighborhood in-

formation aggregation step, edge weight s(e) is normalized by Mv;r

[see Equation (1)]. The investigation of the effect of using Mv;r on

the prediction performance can be found in Section 4 of

Supplementary Materials. We found that incorporating this term is

necessary for yielding promising prediction performance.

In addition, we investigated the robustness of NeoDTI against

different choices of hyperparameters: (i) for the dimension d of the

node embedding, we tested d ¼ 256; 512 and 1024; (ii) for the di-

mension k of the projection matrices, we tested k ¼ 256; 512 and

1024; (iii) for the repetition time p of neighborhood information ag-

gregation, we examined p ¼ 0; 1; 2 and 3. We found that NeoDTI

can produce relatively stable results over a wide range of choices for

both d and k, although we observed that increasing the value of d

can slightly improve the prediction results (Supplementary Fig.

S3a, b). More importantly, we observed significant performance im-

provement when p � 1, demonstrating the necessity of integrating

neighborhood information for the representation learning of node

features (Supplementary Fig. S3c). However, we found that increas-

ing the repetition time of neighborhood information aggregation

from one to three did not improve the prediction performance

(Supplementary Fig. S3c). Thus, in practice, we only need to run the

operation of integrating neighborhood information once. In such a

case, the first dimension of W1 in Equation (2) needs not be d. The

investigation of the effect of this parameter on the prediction per-

formance can be found in Section 4 of Supplementary Materials.

Fig. 3. Incorporating more drug or target related information can improve the prediction performance of NeoDTI. (a) Incorporating the drug-structure similarity

network or protein sequence similarity network. (b) Incorporating the compound-protein binding affinity data. All results were summarized over 10 trials and

expressed as mean6SD
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We found that the choice of this parameter did not significantly af-

fect the prediction performance.

3.4 NeoDTI reveals novel DTIs with literature supports
We also predicted the novel DTIs by training NeoDTI using the

whole HN, including the aforementioned binding affinity data. We

excluded those easy predictions by removing the predicted DTIs that

were similar to the known DTIs (i.e. drug chemical structure similar-

ities >0.6 and protein sequence similarities > 40%). We then ana-

lyzed the predicted DTIs whose prediction confidence scores were

significant (three-sigma rule) with respect to the corresponding

drugs and targets. The network visualization of the top 100 novel

DTIs predicted by NeoDTI can be found in Figure 4.

Among the top 20 predicted DTIs ranked according to their con-

fidence scores, eight DTIs can be supported by previous studies in

the literature (Supplementary Table S2). For instance, sorafenib, a

drug previously approved for the treatment of advanced renal cell

carcinoma, was predicted by NeoDTI to interact with the colony

stimulating factor 1 receptor (CSF1R), which plays an important

role in the development of mammary gland and mammary gland

carcinogenesis (Tamimi et al., 2008). Such a prediction can be sup-

ported by a previous study indicating that sorafenib can block

CSF1R and induce apoptosis in various classical Hodgkin lymph-

oma cell lines (Ullrich et al., 2011). In addition, the carbonic anhy-

drase 6 (CA6), an enzyme abundantly found in salivary glands, has

been previously reported to be the target of three drugs, including

zonisamide, ellagic acid and mafenide (Knox et al., 2011), was pre-

dicted by NeoDTI to also interact with acetazolamide. This predic-

tion can be supported by the previous finding on the CA6 inhibitory

activity of acetazolamide (Nishimori et al., 2007). Overall, these

novel DTIs predicted by NeoDTI with literature supports further

demonstrated its strong predictive power.

4 Conclusion

In this paper, we develop a new framework, called NeoDTI, to inte-

grate diverse information from a HN to predict new DTIs. NeoDTI

extracts the complex hidden features of drugs and targets by apply-

ing neural networks to integrate neighborhood information in the

input HN. By simultaneously optimizing the feature extraction pro-

cess and the DTI prediction model through an end-to-end manner,

NeoDTI can achieve superior prediction performance over other

state-of-the-art methods. The effectiveness and robustness of

NeoDTI have been extensively validated on several realistic predic-

tion scenarios and supported by the finding that many of the novel

predicted DTIs agree well with the previous studies in the literature.

Moreover, NeoDTI can incorporate more drug and target related in-

formation readily (e.g. compound–protein binding affinity data).

Therefore, we believe that NeoDTI can provide a powerful and use-

ful tool to facilitate the drug discovery and drug repositioning proc-

esses. In the future, we will further extend NeoDTI by integrating

more heterogeneous information and validate some of the prediction

results through wet-lab experiments.
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